HOW TO DISTRIBUTE EVENTS: جayPaǰuəm PLURACTIONALS
Marianne Huijsmans and Gloria Mellesmoen
University of British Columbia
Table of Contents
1. Introduction
2. Plural marking in PayPaǰuəəm
3. $\mathrm{C}_{1} \mathrm{C}_{2}$ pluractionals
3.1 Plural events vs. plural participants
3.2 Spatial and temporal distribution of events
3.3 $\mathrm{C}_{1} \mathrm{aC}_{2}$ vs. $\mathrm{C}_{1} \mathrm{C}_{2}$ Reduplication
3.4 External vs. internal pluractionality
3.5 Formal analysis
4. The -Vg- Affix
5. Conclusion

Introduction

Pluractionality is used cross-linguistically to mark event plurality, where events may be distributed across time, space, or participants (e.g. Lasersohn 1995). Pluractionality is broadly categorized into event-external and event-internal pluractionality. Event-external pluractionality encodes a plurality of distinct events, while event-internal pluractionality encodes a plurality of subevents which are grouped into a single larger event (e.g. Cusic 1981, Lasersohn 1995, Wood 2007). Pluractionality is distinct from verbal marking indicating plural participants; a plurality of individuals can be involved in a single event,
and a single individual can be involved in a plurality of events. In this paper, we focus on two types of plural marking on verbs in Pay?aǰuӨəm (Comox-Sliammon, ISO: coo), arguing that one marks event-external pluractionality, while the other marks plural agreement.

PayPaju $\because ə m$ is a critically endangered Central Salish language traditionally spoken in the Tla'amin, Homalco, Klahoose, and K'ómoks First Nations communities in British Columbia. There are approximately 47 fluent native speakers (FPCC 2018). The data in this paper all come from original fieldwork conducted between 2015 and 2019 in the Tla’amin First Nation, Homalco First Nation, and with elders living in Vancouver, unless otherwise indicated. We use a range of methodologies, including providing consultants with a context and then asking for the translation of an English sentence, constructing PayPaju θ əm sentences and asking whether they are grammatical and appropriate with respect to the given contexts (using a combination of pictures and storyboards), and documenting forms volunteered spontaneously in conversation or in the context of an ongoing dictionary project. ${ }^{2}$

In this study, we determine the semantic contribution of $\mathrm{C}_{1} \mathrm{C}_{2}$ reduplication to the verb and how it is distinct from the -Vg-affix, which also marks plurality (building on previous descriptions in Watanabe 2003). ${ }^{3}$ We argue that $\mathrm{C}_{1} \mathrm{C}_{2}$ reduplication on verbs marks a plurality of events, while the -Vg - affix marks plural participants. We further argue that $\mathrm{C}_{1} \mathrm{C}_{2}$ reduplication encodes event-external pluractionality, creating a plurality of events distributed through time and space. Our findings have implications for the cross-linguistic investigation of the typology of pluractionality, since we show that (a) a
requirement for non-overlap in "time-or-space" (Lasersohn 1995:252) is not restrictive enough to account for the interpretation of pluractionals in PayPaju $\theta ə m$, which require distribution in 'time-and-space', and (b) having multiple participants is not sufficient for a predicate to have $\mathrm{C}_{1} \mathrm{C}_{2}$ pluractional marking, though the events of a pluractional may be distributed over participants (contrasting with Lasersohn's 1995 analysis of Klamath pluractionals, as well as Wood's 2007 analysis of Chechen and Yurok pluractionals). $\mathrm{C}_{1} \mathrm{C}_{2}$ reduplication in PayPaju $\theta ə m$ therefore requires a more restrictive formal analysis along several dimensions than those proposed for event-external pluractionals in other languages.
2. Plural marking in PayPaǰuəəm

There are many different ways to mark plurality on verbs in PayPaju $\theta ə m$, including both non-concatenative and concatenative morphological processes. While we only focus on $\mathrm{C}_{1} \mathrm{C}_{2}$ reduplication and the -Vg - affix in the present paper, plurality can also be expressed on verbs through ablaut, a $-\mathrm{V}_{1}$ - reduplicative infix, and a $-\mathrm{C}_{1}$ - reduplicative infix which occurs with stative predicates (Blake 2000, Watanabe 2003, Mellesmoen 2020, Mellesmoen, Davis, \& Matthewson 2020). Each of these plural markers represents a distinct morphological process with its own semantic contribution.

Despite the wealth of plural morphology, the most pervasive type of plural marking in PayPayu $\theta ə m$ is $\mathrm{C}_{1} \mathrm{C}_{2}$ reduplication. The reduplicant is a prefixed copy of the
initial $\mathrm{C}_{1} \mathrm{C}_{2}$ sequence of the root, typically with an epenthetic schwa between the copied consonants, as shown in (1) and (2).
(1) a. Pemen
?imin
door/path
'door, path'
b. PəmPとmen

2əm~?imin
$\mathbf{C}_{1} \mathbf{C}_{2}$.PL \sim door/path
'doors, paths'
(2) a. Pemaš

Pimaš
walk
'to walk'
b. جəm? ${ }^{\text {maš }}$

Pəm~Pimaš
$\mathbf{C}_{1} \mathbf{C}_{2}$. PL \sim walk
'walking around'
$\mathrm{C}_{1} \mathrm{C}_{2}$ reduplication applies cross-categorially and indicates a plurality of entities when applied to nouns, as in (1). When applied to verbs, as in (2), $\mathrm{C}_{1} \mathrm{C}_{2}$ reduplication has been
reported to express a range of plural meanings. Watanabe (2003: 373) states that $\mathrm{C}_{1} \mathrm{C}_{2}$ reduplication can indicate the plurality of the absolutive argument or the time and place where the event occurs, but not the plurality of a subject of a transitive verb. In order to indicate the plural subject of a transitive verb, he notes that speakers must use a different means of marking plurality, such as the $-V g$ - affix.

The -Vg-plural affix, where the letter V is used to represent a vowel of varying quality (see Watanabe 2003:471), only occurs with verbs. ${ }^{4}$ This affix marks plural arguments and can indicate plurality of the subject or object of a transitive verb, depending on its position relative to a transitivizer suffix (Watanabe 2003:474). For example, the plural affix follows the transitivizer suffix in (3a) when marking a plural subject. In (3b), it occurs as an infix to the root and marks a plural object. ${ }^{5}$
(3) a. tayqategəs \quad uk $^{\text {w }}$ načtən. ${ }^{6}$
tayq-at-ig-as $\quad \theta \partial k^{w} n a c ̌ t ə n$
move-CTR-PL-ERG chair
'They moved the chair.'
b. tatayewqatəs to $\theta \mathrm{uk}^{\mathrm{w}} \theta \mathrm{uk}^{\mathrm{w}}$ načtən.
ta \sim tay $<\mathbf{i w}>q-$ at - as $\quad t \geqslant=\theta \partial k^{w} \sim \theta \partial k^{w}$ načtən
IPFV \sim move $<$ PL $>$-CTR-3ERG DET $=\mathrm{C}_{1} \mathrm{C}_{2}$. PL \sim chair 'She is moving the chairs.' EP

The alternation between $/ \mathrm{g} /$ in (3a) and $/ \mathrm{w} /$ in (3b) is a phonologically regular process in PayPaju 0 əm sensitive to syllabification: /g/alternates with /w/ when in coda position. A parallel alternation is observed with / $\mathbf{j} /$, which is $/ \mathrm{y} /$ in coda position. (See Blake (1992) and Mellesmoen (2018) for further details about this alternation).

When the affix occurs with an intransitive verb, it marks a plural subject. The position of the affix relative to other suffixes is variable on intransitive predicates, with no obvious effect on interpretation (also noted in Watanabe 2003:472-3). This is shown in (4), which demonstrates that the -Vg- affix may occur before (4a) or after (4b) the middle suffix with no difference in meaning.
(4) a. Puk ${ }^{w} \quad \dot{k}^{w i k^{w}}{ }^{\top} \mathbf{t}^{\theta}$ gem

Pəw $\hat{\mathbf{k}}^{\mathrm{w}} \dot{\mathbf{k}}^{\mathrm{w}} \mathbf{i}<\hat{\mathrm{k}}^{\mathrm{w}}>\boldsymbol{t}^{\boldsymbol{\theta}}-\mathbf{i g}-\mathrm{im}$
all jump<PL>-PL-MD
'They all jump.'

all jump $<$ PL $>$-MD-PL
'They all jump.'
FL

Watanabe's (2003) description suggests partial overlap between the meaning of $\mathrm{C}_{1} \mathrm{C}_{2}$ reduplication (on verbs) and the -Vg-affix, raising the question of the extent to which these morphemes express distinct meaning. For Upriver Halkomelem (another Central

Salish language), Thompson (2009) argues that all plural verbal morphology is associated with a single plural interpretation. He concludes that $\mathrm{C}_{1} \mathrm{C}_{2}$ reduplication, a plural infix, and an ablaut process are all allomorphs of the same morpheme in Upriver Halkomelem and may express a range of plural interpretations, including plurality of either events or participants. He further argues that these plural markers in Upriver Halkomelem can be used to mark distribution of events in either space or time.

In contrast to Thompson's (2009) treatment of plurals in Upriver Halkomelem, Kinkade (1995) describes a number of plural markers in Upper Chehalis that are associated with different interpretations. Most strikingly, $\mathrm{C}_{1} \mathrm{C}_{2}$ reduplication is restricted to marking distributed events, meaning that other morphology must be used to mark plural participants and nominal plurals. This provides a clear argument against allomorphy for the Upper Chehalis plural markers; there must be several distinct plural morphemes in Upper Chehalis.

Bar-el (2008), focusing on a single type of plural marking in Skwxwú7mesh (another Central Salish language), provides an analysis of $\mathrm{C}_{1} \mathrm{C}_{2}$ reduplication on verbs where the plural interpretation is quite restricted, resembling Kinkade's (1995) description of $\mathrm{C}_{1} \mathrm{C}_{2}$ reduplication in Upper Chehalis, rather than Thompson's (2009) analysis of $\mathrm{C}_{1} \mathrm{C}_{2}$ reduplication in Upriver Halkomelem. She argues that $\mathrm{C}_{1} \mathrm{C}_{2}$ reduplication on verbs in Skwxwwú7mesh marks event plurality and cannot be satisfied by plural participants alone. She also argues that events are necessarily individuated through temporal distribution when $\mathrm{C}_{1} \mathrm{C}_{2}$ reduplication is used. ${ }^{7}$

In this paper we will argue that $\mathrm{C}_{1} \mathrm{C}_{2}$ reduplication and the -Vg - affix in PayPayüəm have specialized semantic functions and cannot be analyzed as allomorphs of the same plural morpheme. This contrasts with the 'single morpheme with many allomorphs' analysis Thompson (2009) pursues in Upriver Halkomelem. We will also argue that $\mathrm{C}_{1} \mathrm{C}_{2}$ reduplication requires a plurality of distributed events, as Kinkade (1995) and Bar-el (2008) argue for $\mathrm{C}_{1} \mathrm{C}_{2}$ reduplication in Upper Chehalis and Skwxwú 7 mesh , respectively, though the distributional requirements vary between the languages.

Before concluding this section, we note that despite the wealth of pluralizing morphology, plural marking is not obligatory for the plural interpretation of either nominal or verbal predicates. Nouns without overt plural morphology may be interpreted as denoting a single entity or plural entities. For instance, in (5) the noun $\theta u k^{w} n a c ̌ t z n$ $/ \theta \partial \mathrm{k}^{\text {w}}$ načtən/ 'chair' is preceded by the (plural) number sa?a/saPa/ 'two', but no plural morphology is present on the noun (it is not reduplicated).
(5) q^{w} oq $^{w}{ }^{\text {olsx }}{ }^{w} \partial s$ saPa θu^{w} načtən.
$q^{\mathrm{w}} \partial \sim \mathrm{q}^{\mathrm{w}} \partial \mathrm{l}-\mathrm{sx}^{\mathrm{w}}-$ as \quad saPa $\quad \theta \partial \mathrm{k}^{\mathrm{w}}$ načtən
IPFV~come-CAUS-3ERG two chair
'She's bringing two chairs.' MV

Compare this to $\theta u k^{w} \theta u k^{w} n a c ̌ t \partial n / \theta \partial \mathrm{k}^{\mathrm{w}} \theta \partial \mathrm{k}^{\mathrm{w}}$ načtən/ 'chairs' in (3b) which has $\mathrm{C}_{1} \mathrm{C}_{2}$ plural reduplication. Similarly, both the non-reduplicated form memaw /mimaw/ 'cat' in
(6a) and the reduplicated form məmmemáw/məmmimaw/ in (6b) were volunteered by the same speaker to describe the same picture of two cats.
(6) a. Context: Describing a picture of two cats sitting on a chair. sapa memaw̉ k^{w} a:náč $\quad \theta \mathrm{uk}^{\mathrm{w}}$ načtən. saPa mimaw̉ $\quad \mathrm{k}^{w}$ anáč $\quad \theta \partial \mathrm{k}^{\mathrm{w}}$ načtən two cat sitlSTAT chair
'Two cats are sitting on the chair.' PD
b. Context: Describing a picture of two cats sitting on a chair.

saPa	məmm\&maw̉	k^{w} a:náč	$\theta u^{\text {w }}$ načtən.
sapa	$\mathbf{m o m} \sim$ mimaw	$\mathrm{k}^{\text {wanáč }}$	$\theta ə \mathrm{k}^{\mathrm{w}}$ načtən
two	$\mathrm{C}_{1} \mathrm{C}_{\mathbf{2}} \mathbf{.} \mathbf{P L} \sim$ cat	sit\STAT	chair

Plural marking on verbs is similarly optional. Verbs unmarked for plurality may similarly involve a single event or multiple events. The sentences in (7a) and (7b) were both volunteered to describe the same picture involving a repeated closing action, but the verb taqt /təqt/ 'close something' is only marked as plural in (7b). ${ }^{8}$
(7) a. Context: Picture of a girl in the middle of closing a series of doors.

Puk w totqtəs	Pعm ε n.
Pəwk ${ }^{w}$ tə \uparrow tq-t-as	Pimin

all IPFV~close-CTR-3ERG door
'She's closing all the doors.' JF
b. teqtəqtəs PəmPemen.
$\boldsymbol{t} \boldsymbol{q} \boldsymbol{q} \sim$ təq-t-as \quad Pəm~ Pimin
$\mathbf{C}_{1} \mathbf{C}_{2}$.PL \sim close-CTR-3ERG $\quad \mathrm{C}_{1} \mathrm{C}_{2}$. PL \sim door
'She's closing the doors.' JF

3. $\mathrm{C}_{1} \mathrm{C}_{2}$ pluractionals

In this section, we discuss the semantic contribution of $\mathrm{C}_{1} \mathrm{C}_{2}$ plural reduplication in the verbal domain. We show that $\mathrm{C}_{1} \mathrm{C}_{2}$ reduplication encodes plural events, rather than marking plural participants (though in some cases the events may be distributed across plural participants). In Section 3.1, we show that having plural participants is not sufficient for the felicitous use of $\mathrm{C}_{1} \mathrm{C}_{2}$ plural reduplication if events are not distributed. In section 3.2, we show that the distribution of plural events must be both spatial and temporal, rendering a quite restricted context for the felicitous use of $\mathrm{C}_{1} \mathrm{C}_{2}$ reduplication. Then, in Section 3.3, we discuss instances of $\mathrm{C}_{1} \mathrm{C}_{2}$ reduplication with a full vowel in the reduplicant, arguing that they have the same pluractional semantics as $\mathrm{C}_{1} \mathrm{C}_{2}$ reduplicated forms with a schwa. Following this, we argue in Section 3.4 that $\mathrm{C}_{1} \mathrm{C}_{2}$ pluractionals can
be categorized as event-external pluractionals under a range of diagnostic criteria. Section 3.5 provides a formal analysis of $\mathrm{C}_{1} \mathrm{C}_{2}$ plural reduplication, and Section 3.6 discusses the semantic contribution of the -Vg- affix and establishes how it is distinct from $\mathrm{C}_{1} \mathrm{C}_{2}$ plural reduplication.
3.1 Plural events vs. plural participants
$\mathrm{C}_{1} \mathrm{C}_{2}$ reduplication on verbs encodes plural events, not plural participants, though plural participants may be involved. This can be seen in (8) where $\mathrm{C}_{1} \mathrm{C}_{2}$ plural reduplication is used in contexts where neither the subject nor the object is plural, but there is spatial and temporal distribution of events.

Further, plural participants alone are not sufficient when using $\mathrm{C}_{1} \mathrm{C}_{2}$ reduplication if the events are not distributed over space and time. $\mathrm{C}_{1} \mathrm{C}_{2}$ reduplication is acceptable in (9) in a context where there are multiple locking events, but (10a) shows that it is not acceptable if there is only a single locking event, even if multiple doors are involved. Instead, a form without $\mathrm{C}_{1} \mathrm{C}_{2}$ reduplication must be used, such as the one with imperfective C_{1} reduplication in (10b).
(9) Context: It's taking me a bit of time to get out of the house and ready to leave.

You ask me what I am doing. I tell you:
laklukletč to PəmPemen
lak~ləkl-it=č $\quad t ə=$?əm~ \sim imin
$\mathbf{C}_{1} \mathbf{C}_{\mathbf{2}}$. $\mathbf{P L} \sim$ lock-CTR $=1$ SG. SBJ DET $=$ PL \sim door
'I'm locking the doors.'
EP, BW
(10) Context: I press the button on my keys to lock all the doors of my car and I tell you:
a.\# laklıkletč
$\mathbf{l} \boldsymbol{\partial k} \sim l ə \mathrm{kl}-\mathrm{it}=$ č
$\mathbf{C}_{1} \mathbf{C}_{2}$. PL \sim lock-CTR $=1$ SG.SBJ DET $=$ PL \sim door
'I'm locking the doors.'
b. lukeletč \quad tet ${ }^{\theta}$ Patnopel.

$$
\text { lə } \sim \mathrm{lk} \partial \mathrm{l}-\mathrm{it}=\mathrm{c} \quad \mathrm{c} \quad \mathrm{t}=\mathrm{t}^{\mathrm{t}}=\text { Patnupil }
$$

$$
\text { IPFV } \sim \text { lock }-\mathrm{CTR}=1 \mathrm{SG} . \mathrm{SBJ} \quad \text { DET=1SG.POSS }=\mathrm{car}
$$

'I'm locking my car.'
BW

Similar to the examples in (9-10), (11a) shows that $\mathrm{C}_{1} \mathrm{C}_{2}$ reduplication is acceptable where there are multiple buying events, but (11b) shows that it is not acceptable in a context where there is a single buying event involving multiple things (as the absolutive argument); the correct form is (11c), without $\mathrm{C}_{1} \mathrm{C}_{2}$ reduplication on the verb.
(11) a. Context: Picture of someone going from store to store, picking up food, tools, home supplies..

Puk ${ }^{\mathrm{w}}$ tam yəqyəqtəs $\theta \mathrm{ux}^{\mathrm{w}} \varepsilon n \mathrm{~s}$ y\&q̉દtsx ${ }^{\mathrm{w}}$ əs.
 all thing $\mathbf{C}_{\mathbf{1}} \mathbf{C}_{\mathbf{2}}$. PL~buy-CTR-3ERG be.how use-STAT-CAUS-3ERG 'He bought everything he needs.' EP
b. Context: Picture of someone at the cashier of a one-stop shop like Costco buying all kinds of things.

 all thing $\mathbf{C}_{\mathbf{1}} \mathbf{C}_{\mathbf{2}} \mathbf{. P L} \sim$ buy-CTR-3ERG be.how use-STAT-CAUS-3ERG 'He bought everything he needs.' EP
c. Context: Same as (11b).

Puk ${ }^{\text {w }}$ tam	yəqtəs	$\theta u x^{\text {w }}$ ¢ns	
Pəwk ${ }^{\text {w }}$ tam	yəq-t-as	$\theta \partial x^{w i n s}$	yəq่-it-sx ${ }^{\text {w}}$-as
all thing	buy-CTR	be.how	use-STAT-CA

'He bought everything he needs.' EP

Intransitive verbs with $\mathrm{C}_{1} \mathrm{C}_{2}$ reduplication have the same requirement for the event to be distributed, as shown in (12). If walking is spatio-temporally distributed, $\mathrm{C}_{1} \mathrm{C}_{2}$ reduplication is acceptable, as was shown in (8a). In contrast, the example in (12) involves walking from a defined point A to point B and $C_{1} \mathrm{C}_{2}$ reduplication is not acceptable, even though the subject is plural. The imperfective form in (12b) is used instead.
(12) Context: We are walking from the lodge to the gym for a gathering.
a. \# ?əm?

Pəm~?imaš=št $\quad \theta \mathrm{u}^{\mathrm{w}}=\mathrm{gym}$
$\mathbf{C}_{1} \mathbf{C}_{2}$. $\mathbf{P L} \sim$ walk go DET $=$ gy
'We're walking to the gym.'
b. \quad P $\varepsilon \varepsilon$ maššt $\quad \theta 0 \mathrm{k}^{\mathrm{w}} \mathrm{gym}$

Pi~ $\mathrm{i} i m a s ̌=s ̌ t \quad \quad \theta \mathrm{u} \mathrm{k}^{\mathrm{w}}=\mathrm{gym}$
IPFV \sim walk $=1$ PL. SBJ \quad go $\mathrm{DET}=$ gym
'We're walking to the gym' BW

From the data in this section, it is clear that $\mathrm{C}_{1} \mathrm{C}_{2}$ reduplication does not mark the presence of plural participants. It is felicitous with singular participants and furthermore can be infelicitous in cases where there are plural participants. The infelicitous cases with plural participants examined in this section seem to be ruled out because the presence of plural participants is not sufficient for the event to be interpreted as plural. However, there is another potential source of infelicity: it is possible that there are multiple events involved but the presence of multiple participants alone does not allow events to distribute in the manner required by $\mathrm{C}_{1} \mathrm{C}_{2}$ reduplication. In the following section, we examine this issue in more detail, investigating the distributional requirements for events encoded by $\mathrm{C}_{1} \mathrm{C}_{2}$ reduplication.

3.2 Spatial and temporal distribution

Cross-linguistically, distribution of events can be divided into three types: (1) distribution over atoms of a plural participant, (2) distribution in time, and (3) distribution in space (Lasersohn 1995). In this section, we argue that events must be distributed in both space and time for felicitous use of $\mathrm{C}_{1} \mathrm{C}_{2}$ verbal reduplication in PayPaju $\theta ə m,{ }^{9}$ and that distribution of events over plural participants is not sufficient.

Firstly, temporal distribution alone is not sufficient for felicitous use of $\mathrm{C}_{1} \mathrm{C}_{2}$ verbal reduplication if there is no spatial distribution. In (13a), for instance, the context
specifies that same window is repeatedly closed, and $\mathrm{C}_{1} \mathrm{C}_{2}$ reduplication is therefore infelicitous. The acceptable form, given in (13b), has imperfective reduplication instead.
(13) Context: Gloria keeps opening the window, but I find it too cold so I keep closing it.
a. \# təqtəqtč
tə məmkeyustən.
$\boldsymbol{t} \boldsymbol{q} \mathbf{q} \sim \operatorname{tzq}-\mathrm{t}=$ č
t =$=$ məmkiyustən
$\mathbf{C}_{1} \mathbf{C}_{2}$. PL \sim close $-\mathrm{CTR}=1$ SG.SBJ \quad DET $=$ window
'I repeatedly closed the window.'
b. \quad ǰqač gut
jॅaqa? $=$ č $=$ gut
tətqt
to məmkeyustən.

EXCLAM $=1$ SG.SBJ=DPRT + EXCL
to \sim tq- t
t $2=$ məmkiyustən
EXCLAM $=1$ SG $. S B J=$ DPRT + EXCL \quad IPFV \sim close-CTR \quad DET=window
'I'm forever closing that window.'
EP

Similarly to (13), the example in (14) demonstrates that $\mathrm{C}_{1} \mathrm{C}_{2}$ reduplication on a verb is felicitous where a child repeatedly feels a birthday present all over while trying to guess what is inside, but not for a cat that repeatedly taps water with its paw, thereby distributing the plural event over time but not over space, since the touching is brief and limited to a single spot.
(14) a. Context: A child is given a birthday gift, but not allowed to open it yet, so he feels it all over to try to guess what's inside.

раує qәрqәрtәs
рауар $\mathbf{q} \boldsymbol{p} \sim$ qәр-t-as
always $\mathbf{C}_{1} \mathbf{C}_{2}$. PL~touch-CTR-3ERG
'He's always touching/feeling it.' JF
b. Context: Your cat is curious about water and always touches it when you fill up his bowl with fresh water. However, he only ever just barely touches it, because he doesn't like to get wet.
i. \# paye qəpqәptəs qaye.
paya? qəp~qәp-t-as qaỷa
always $\mathbf{C}_{1} \mathbf{C}_{2}$. PL~touch-CTR-3ERG water
'He always touches the water.'
JF
ii. paye qəqptəs qaye.
paya? qə~qp-t-as qaỷa
always IPFV~touch-CTR-ERG water
'He always touches the water.' JF

Secondly, spatial distribution alone is not sufficient if there is no temporal distribution. For (15b), where multiple car lights come on simultaneously, the form with $\mathrm{C}_{1} \mathrm{C}_{2}$ reduplication is unacceptable, but in (15a) where lights are coming on 'here and there' throughout a city, it is acceptable. Note that $t i q^{w} o l$ gets a 'starting to' interpretation
in (15a) where the events are ongoing, but it is also perfectly compatible with completed punctual events as in $(15 \mathrm{c})$. The infelicity of $(15 b)$, then, is not due to the presence of $t i$ $q^{w} o l$, but the lack of temporal distribution for the events. ${ }^{10}$
a. Context: You have a view of a city as it gets dark and you see lights gradually coming on here and there.

CLDEM come $\mathbf{C}_{1} \mathbf{C}_{\mathbf{2}}$. PL~turn.on DET=Powell River
'Powell River is starting to light up.'
b. Context: I turn on my car and all my lights come on.

$$
\begin{aligned}
& \text { ti } \quad q^{w} \partial \dot{l} \quad \mathbf{x}^{w} \partial \mathbf{w}^{\prime} \sim \mathrm{x}^{\mathrm{w}} \partial \boldsymbol{W} \quad \mathrm{t} \boldsymbol{=}=\mathrm{t}^{\theta}=\mathrm{car}
\end{aligned}
$$

CLDEM come $\mathbf{C}_{\mathbf{1}} \mathbf{C}_{\mathbf{2}}$.PL~turn.on DET $=1$ SG.POSS $=$ car
'My car lit up.'
c. ti $\mathrm{q}^{\mathrm{w} o l}$ tas
ti $q^{w} \partial{ }^{\text {l }}$ tas
CLDEM come arrive
'He arrived.' EP

Similarly, $\mathrm{C}_{1} \mathrm{C}_{2}$ reduplication is unacceptable where a bunch of students jump at the same time (so that the event is distributed in space and across participants, but not temporally
distributed), but fine where a single child is jumping about (and the event is spatially and temporally distributed). This is shown in (16).
(16) Context: A bunch of students jumping for a graduation photo. Everyone jumps at the same time, just once.
a. \quad Puk ${ }^{\mathrm{w}} \quad \dot{\mathrm{k}}^{\mathrm{w} \hat{t}^{\theta} \varepsilon m} \varepsilon \mathrm{~m}$.

all jump-MD-PL
'They all jumped.'
b. \# $\mathbf{k}^{\mathrm{w}} \mathbf{a}^{\theta}{ }^{\boldsymbol{k}} \hat{k}^{\mathrm{w}} \hat{\mathbf{t}}^{\theta} \varepsilon m$.
$\overrightarrow{\mathbf{k}}^{\mathrm{w}} \mathbf{a}^{\boldsymbol{t}}{ }^{\theta} \sim \hat{k}^{\mathrm{w}} \mathrm{i}^{\boldsymbol{\theta}}-\mathrm{im}$
$\mathbf{C}_{1} \mathbf{C}_{2}$.PL~jump-MD
(n.b. ok when describing an excited child jumping about the room) PD

Examples (15) and (16) also serve to illustrate that distribution over plural participants is not sufficient for $\mathrm{C}_{1} \mathrm{C}_{2}$ reduplication to be felicitous, since both the (a) and (b) examples involve plural participants, but only the (a) examples, where events are distributed in both time and space, are felicitous with $\mathrm{C}_{1} \mathrm{C}_{2}$ reduplication. Of course, distribution in space and distribution over participants is tightly linked, since participants cannot generally co-occur at the same spatial coordinates. However, we have also seen that there are felicitous examples with only singular participants, but no felicitous examples where there is no spatial distribution. We therefore propose that $\mathrm{C}_{1} \mathrm{C}_{2}$
reduplication requires distribution of events across time and space, but does not require distribution over plural participants, though distribution in space may involve plural participants.

$3.3 \mathrm{C}_{1} \mathrm{aC}_{2}$ vs. $\mathrm{C}_{1} \partial \mathrm{C}_{2}$ Reduplication

While the majority of $\mathrm{C}_{1} \mathrm{C}_{2}$ reduplicated forms given throughout this paper have an epenthetic $/ \partial /$ in the reduplicant, there are several forms with $/ \mathrm{a} /$ instead. In this section, we explore whether these forms should be treated separately and conclude that they involve the same $\mathrm{C}_{1} \mathrm{C}_{2}$ pluractional reduplication process (which has the same semantic contribution). For some of these cases, we suggest that $\mathrm{C}_{1} \mathrm{C}_{2}$ pluractional reduplication may be accompanied by an additional ablaut process, while in others the presence of a full vowel may represent a lexicalized exception.

Forms with a full vowel in the reduplicant show the same requirement for spatial and temporal distribution as forms with schwa in the reduplicant. For instance, (17a) is not felicitous in a context where a chair is moved in a direct line from one location to another; it is only felicitous when a chair is being pushed to multiple different places. Similarly, $k^{w} a a^{\prime} \boldsymbol{k}^{\prime} w i t^{\prime} \theta i m$ in (17b) is felicitous for someone jumping from place to place, but not for a bunch of people jumping together. It is also not used for someone jumping up and down in one spot; plurality in this context is instead marked with a reduplicated C_{1} infix, as shown in (17c).
(17) a. \checkmark Context: Gloria is pushing the chair around the room.
\# Context: Gloria is pushing the chair from here to there (locations in the room pointed out).
taytayqatəm Gloria to ulk $^{\text {wnačtən. }}$
tay \sim tayq-at-əm Gloria tə= $\begin{aligned} \text { okwnačtən }\end{aligned}$
$\mathbf{C}_{1} \mathbf{C}_{\mathbf{2}}$.PL \sim move-CTR-PASS Gloria DET=chair
'Gloria keeps moving the chair around.' JF
b. $\sqrt{ }$ Context: Someone jumping from rock to rock across a river.
\# Context: A bunch of students jumping for a graduation photo.
Everyone jumps at the same time, just once.

$\vec{k}^{\mathrm{w}} \mathbf{a}^{\boldsymbol{t}}{ }^{\theta} \sim \hat{k}^{\mathrm{w}} \mathrm{i}^{\boldsymbol{\theta}}-\mathrm{im}$
$\mathbf{C}_{1} \mathbf{C}_{\mathbf{2}}$. $\mathbf{P L}$ ~jump -MD
'He/she is jumping.' EP
c. Context: Someone is jumping up and down in one spot.

jump $<\mathbf{P L}>$-MD
' $\mathrm{He} /$ she is jumping up and down.'
EP

For some forms, such as those in (18) and (19), either /a/ or /a/may occur in the $\mathrm{C}_{1} \mathrm{C}_{2}$ reduplicant.

$\mathbf{C}_{1} \mathbf{C}_{2}$.PL~see-CTR
'to look s.t. over'

$\dot{\mathbf{k}}^{w}<\mathbf{a}>\mathbf{n} \sim \dot{\mathbf{k}}^{\mathrm{w}}$ әn-t
$\mathrm{C}_{1} \mathrm{C}_{2}$.PL<ABL>~see-CTR
'to be looking s.t. over'

$\mathbf{C}_{1} \mathbf{C}_{2}$.PL~wipe-CTR
'to wipe things down'
b. $\mathfrak{t}^{0} \mathbf{a k}^{\mathrm{w} t^{\dagger}}{ }^{0} \mathrm{k}^{\mathrm{w}} \mathrm{t}$
$\boldsymbol{i}^{\boldsymbol{\theta}}<\mathbf{a}>\mathbf{k}^{w} \sim \mathfrak{i n}^{w} \mathrm{z}^{\mathrm{w}}-\mathrm{t}$
$\mathrm{C}_{1} \mathrm{C}_{2}$.PL<ABL>~wipe-CTR
'to be wiping things down'

While each form involves a spatio-temporally distributed action, there is a semantic distinction between the two forms.

Research investigating this semantic difference is still preliminary, but we note that the forms with ablaut were volunteered in a situation where the action described was
happening at the time of utterance, whereas the forms without ablaut were used for contexts such as completed actions and imperatives. For instance, (20) describes an ongoing action and ablaut is used. ${ }^{11}$
(20) Context: Someone is looking over a newspaper or document. $\dot{k}^{\mathrm{w}} \mathbf{a n k}^{\mathrm{w}}$ Untəs to pipa.
$\hat{\mathrm{k}}^{\mathrm{w}}<\mathbf{a}>\mathrm{n} \sim \dot{\mathrm{k}}^{\mathrm{w}} \not \partial \mathrm{n}-\mathrm{t}-\mathrm{as} \quad \mathrm{t}=$ pipa
$\mathrm{C}_{1} \mathrm{C}_{2}$.PL<ABL>~see-CTR-3ERG DET=paper
'He's looking over the paper.' EP

In contrast, (21) describes a completed event and the form without ablaut is used.
(21) Context: Someone went to check out a boat or car that is for sale. ho $\dot{\mathrm{k}}^{\mathrm{w}} \mathrm{a} \quad \dot{\mathrm{k}}^{\mathrm{w}} \mathrm{Un}^{\mathrm{k}}{ }^{\mathrm{w}}$ Untesol. $\mathrm{hu}=\dot{\mathrm{k}}^{\mathrm{w}} \mathrm{a} \quad \dot{\mathrm{k}}^{\mathrm{w}}$ ən $\sim \mathrm{k}^{\mathrm{w}}$ ən-t-as-uł $\mathrm{go}=\mathrm{RPT} \quad \mathrm{C}_{1} \mathrm{C}_{2}$. PL \sim See-CTR - PST 'He went to look it over.' EP

Similarly, the form without ablaut is used for the imperative in (22).
(22) Context: I hand Freddie the paper, telling him to read it.

\hat{k}^{w} ən $\hat{\mathrm{k}}^{\mathrm{w}}$ ən- $=\mathrm{ga} \quad$ tiPi
$\mathrm{C}_{1} \mathrm{C}_{2}$. $\mathrm{PL} \sim$ See-CTR $=$ PRT DEM
'Look this over.'
EP

It is worth noting that all of the forms which have an alternation between a full vowel and schwa in the reduplicant involve weak roots (roots with a schwa vowel). This type of alternation is not, to our knowledge, found for forms with a full vowel in the root. ${ }^{12}$ Thus, while a full vowel in the reduplicant of weak roots is the result of an ablaut process with an additional semantic function, forms with a full vowel in the root and the reduplicant do not appear to involve the same process and may involve a lexicalized pattern. Crucially, while the origins of a full vowel in the reduplicant for certain $\mathrm{C}_{1} \mathrm{C}_{2}$ reduplicated verbal forms are not well understood, the reduplication itself has the same semantic contribution in these forms as in the forms with a schwa in the reduplicant, indicating that these should be treated under the same formal analysis. We therefore propose that the full vowel forms have undergone the same $\mathrm{C}_{1} \mathrm{C}_{2}$ reduplicative process as the ones with / $/$ /, and that the presence of a full vowel represents either a secondary process that is separate from pluractional reduplication or a lexicalized exception.

[^0]Cross-linguistically, the distinction between event-internal and event-external pluractionality has been identified as a central parameter in the typology of pluractional marking (e.g. Cusic 1981, Wood 2007, Henderson 2017). The examples in (23) from Yup'ik are instances of event-internal pluractionality, which involves plural subevents that make up a larger single event. In this case, there are multiple small tearing or brushing (against) subevents which are encompassed in a whole 'tearing up' or 'strumming' event.
(23) Yup'ik: Event-internal plurality
a. alleg- 'to tear' allguraa 'he is tearing it up'
b. kaleg- 'to brush against' kalguraa 'he is strumming it'
(Wood 2007:74)

The examples in (24) from Yurok demonstrate event-external pluractionality, which involves plural events that are not grouped. In this case, eating events are distributed over multiple occasions, giving the verb a habitual interpretation (24a), and ringing events are distributed across time rather than being grouped within a single interval (24b).
(24) Yurok: Event-external plurality
a. negep-ek' nepuy
eat.ITR-1SG salmon
'I eat salmon all the time.'
b. kich tegin

PERF ring.ITR
'The bell is ringing every now and then.' (Wood 2007:146-7)

It can be difficult to determine when multiple events are to be viewed as subevents of single larger event or as distinct events. Based on a survey of 43 languages, Wood (2007) proposes a number of characteristics that typically differ between event-internal and event-external pluractionality:

1) While event-internal pluractionals tend to involve events that are closely spaced in time, the events of an event-external pluractional may be spaced out in time and can occur over multiple occasions.
2) While event-internal pluractionals tend to involve a high number of repetitions, event-external pluractionals may involve as few as two repetitions.
3) Event-internal pluractionals are often restricted to occurring only with semelfactives and achievements, while event-external pluractionals are less selective in which lexical aspectual classes they can occur with.
4) Event-internal pluractionals often involve actions that are typically or inherently repeated, whereas the same trend is not found with event-external pluractionals.
5) The events of an event-internal pluractional tend to have a common goal or completion, while the same is not necessarily true of event-external pluractionals.
6) Event-internal pluractionals tend to involve a singular or grouped non-agentive argument, whereas this is not true of event-external pluractionals.

The diagnostics listed above appear to indicate that the semantics of event-internal pluractionals are more restrictive than the semantics of event-external pluractionals. Event-internal pluractionals are nevertheless not intended to be understood as a subtype of event-external pluractionals. Rather, event-external and event-internal pluractionals are analyzed as having different structures of plurality. Specifically, Wood (2007) proposes that event-internal pluractionals involve grouping subevents into a single larger atomic event (analogous to group nouns like committee, which have a plurality of members but are singular), while event-external pluractionals involve a plurality of events that are not grouped. In fact, event-external pluractionals tend to involve individuation of events through specific distributional requirements, so their semantics are also restrictive, but in a different manner. The characteristics typical of the different types of pluractionality therefore reflect the different types of plurality involved.

Below, we discuss how $\mathrm{C}_{1} \mathrm{C}_{2}$ reduplicated predicates behave with respect to each of Wood's characteristics. Based on these diagnostics and the temporal-spatial distribution requirements discussed above, we propose that $\mathrm{C}_{1} \mathrm{C}_{2}$ reduplication creates a plurality of events that are distributed, not grouped, and therefore that $\mathrm{C}_{1} \mathrm{C}_{2}$ reduplication marks event-external pluractionality.

According to Wood's first diagnostic, the subevents of an event-internal pluractional are grouped into a single larger event which tends to take place on a single occasion. In contrast, distribution over multiple occasions is typical of event-external pluractionals. $\mathrm{C}_{1} \mathrm{C}_{2}$ reduplication in PayPaju 0 əm must involve events that are distributed in time (see section 3.2) and can involve events that are distributed over multiple occasions ($25 \mathrm{a}-\mathrm{c}$).
(25) a. Context: Describing someone who's always giving rides to people. payє Rot $\quad \chi$ əрхәрі Freddie.
paya=?ut \quad хәр \sim хәәрәу Freddie
always=EXCL $\quad \mathbf{C}_{1} \mathbf{C}_{2}$.PL~return Freddie
'Freddie's always back and forth.'
EP
b. Context: Talking about a soccer team...

paya? $\quad \dot{x}<\mathbf{a}>\mathbf{x}^{\mathrm{w}} \sim \dot{x} \partial x^{\mathrm{w}}-\mathrm{it}-\partial \mathrm{m}$
always $\quad \mathbf{C}_{1} \mathbf{C}_{\mathbf{2}}$. PL<ABL>~win-CTR-PASS
'They're always getting beaten.' EP
c. payeč Pot payap $=$ č $=$?ut always $=1$ SG.SBJ $=$ EXCL
'I'm always waiting for you.'
nəgi.
nəgi
2SG.SBJ

With respect to Wood's first diagnostic, then, $\mathrm{C}_{1} \mathrm{C}_{2}$ reduplication behaves as a marker of event-external pluractionality. ${ }^{13}$

According to Wood's second diagnostic, event-internal pluractionals involve high numbers of repetitions, while event-external pluractionals may involve as few as two repetitions. While $\mathrm{C}_{1} \mathrm{C}_{2}$ reduplication often signals numerous repetitions, it is also felicitous in situations where as few as two repetitions are involved, as in (26).
(26) Context: There's just two doors to outside, the front door and the back door. It's getting hot and I tell you:
ho ga gəq̆qəəq̉š̌wum. hehew \dot{k}^{w} asmot.
hu=ga gə $\boldsymbol{q} \sim$ gəq̆-šaw-əm hihiw $\mathfrak{k}^{\text {wwas-mut }}$
go $=$ DPRT $\quad \mathbf{C}_{1} \mathbf{C}_{\mathbf{2}}$.PL~open-door-MD really hot-INT
'Go open the doors. It's really hot.' EP

This behavior is consistent with the characteristics of event-external pluractionals, but not event-internal pluractionals.

In her third diagnostic, Wood observes that event-internal pluractionals tend to be limited with respect to which lexical aspectual classes they can occur with, typically occurring only with achievements and semelfactives, whereas event-external pluractionals have a less restricted distribution. In order to evaluate how $\mathrm{C}_{1} \mathrm{C}_{2}$ reduplication fares with respect to this diagnostic, we need criteria to determine lexical aspectual classes. While more fine-grained lexical aspectual distinctions have not been fully established, telicity is fairly well understood. For instance, (a) telicity can be tested using the adverb $\chi^{w} O \chi^{w} / \underline{x}^{w} u{\underset{x}{ }}^{w} /$ 'for a long time'. Telic predicates are incompatible with $\chi^{w} O \chi^{w} / \underline{x}^{w} u x^{w} /$ as a pre-verbal auxiliary, while atelic predicates are compatible with it. For instance, perfective bare roots such as $\check{c} \varepsilon \chi /$ č̀əx / 'get cooked' in (27a), are telic, entailing culmination (27b).

a. ti	č่ $¢ \chi$	to tens.
ti	č่วx	to $=$ tin-s

CLDEM get.cooked DET=bbq'd.fish-3POSS
'Her barbecued fish is cooked.' EP
b. Context: I had my dinner in the oven for as long as the instructions said, but when I check it, it is only half-cooked. My oven seems to be a bit unreliable these days.

* č̀ $\varepsilon \chi \quad$ Pi $\quad x^{w} a ? \quad$ č cməs č̀ $\chi \chi$.
 get.cooked CONJ NEG QUEX=3SJBV get.cooked *'It cooked, but it wouldn't cook.’ BW

These telic bare roots are incompatible with the auxiliary $\chi^{w} \delta \chi^{w} / \underline{x}^{w} u x^{w /}(28) .{ }^{14}$
(28) Context: Telling you about a Thanksgiving turkey mishap.

* $\chi^{\mathrm{w}} \chi^{\mathrm{w}}$ mot $\check{c} \mathrm{c} \varepsilon \chi$.
$\mathrm{x}^{\mathrm{w}} \mathrm{u} \underline{x}^{\mathrm{w}}-\mathrm{mut} \quad$ č̀ $\partial \mathrm{x}$
long.time-INT get.cooked
'It cooked for a long time.' EP

Predicates transitivized with the noncontrol transitivizer (29a) are also telic, entailing culmination (Watanabe 2003:205) (29b).
(29) a. Context: I had a big turkey for thanksgiving and I cooked it for a long time until it was finally done. $\mathrm{k}^{\mathrm{w}} \mathrm{u} \quad \stackrel{\grave{c}}{\mathrm{c}} \varepsilon \chi \mathrm{XX}^{\mathrm{w}}$ ən $\quad \mathrm{t}^{\dagger}$ məǰ $\varepsilon \theta$. $\mathrm{k}^{\mathrm{w}} \mathrm{a} \quad$ č̀ $\partial \mathrm{x}-\partial \mathrm{x}^{\mathrm{w}}-\mathrm{an} \quad \mathrm{t}^{\dagger}=\mathrm{m} \partial \mathrm{y}^{2} \theta$ CLDEM get.cooked-NCTR-1S.ERG 1S.POSS=meat 'I have cooked my meat.' BW
b. Context: I had my dinner in the oven for as long as the instructions said, but when I check it, it is only half-cooked. My oven seems to be a bit unreliable these days.

* č̌ $¢ \chi U \chi^{w}{ }^{\text {c }}$?i	x^{w} a?	č̌məs	č̀ $\varepsilon \chi$.
çə $\mathrm{Cl}^{-\partial \mathrm{X}^{\mathrm{w}}=\text { č }}$	Piy	x^{w} a?	čam $=$ as	č่วx
get.cooked-NCTR $=1$ S.SBJ	CONJ	NEG	QUEX $=3 \mathrm{SJBV}$	get.cooked
'I cooked it but it wouldn	't cook			BW

Predicates transitivized with the noncontrol transitivizer are likewise incompatible with the auxiliary $\chi^{w} o \chi^{w} / \underline{x}^{w} u x^{w} /$, as shown in (30). ${ }^{15}$
(30) Context: Discussing a thanksgiving turkey mishap.

really $=1$ S.SJB long.time-INT get.cooked-NCTR DET=chicken
'I cooked the turkey for a long time.'
BW

In contrast, there is a class of derived unergative activity predicates that are atelic and compatible with the auxiliary $\chi^{w} o \chi^{w} / \underline{x}^{w} u x^{w} /$. These tend to be affixed with the middle suffix -əm /-əm/, the active intransitive suffix -Pam/-?əm/, or the intransitive $-V \check{s} /-\mathrm{Vš/}$ suffix, as for $2 \varepsilon m a \check{s ̌} /$ Rimaš/ in (31) (see Watanabe 2003:185-200 for further discussion).

$$
\begin{align*}
& \chi^{\mathrm{w}} \chi^{\mathrm{w}} \text { motč } \quad \text { Pemaš sy̌zsol. } \tag{31}\\
& x^{\mathrm{w}} u \mathrm{x}^{\mathrm{w}}-\mathrm{mut}=\text { č } \quad \text { Pim-aš sjasul } \\
& \text { long.time-INT=1S.SBJ step-INTR yesterday } \\
& \text { 'I walked a long time yesterday.' BW }
\end{align*}
$$

Predicates transitivized with the control transitivizer also do not entail culmination,
 Matthewson 2005 for St'át'imcets (Lillooet) and Skwwwú7mesh (Squamish), Kiyota 2008 for SENĆO干EN (Saanich, Northern Straits)); the lack of culmination entailment is illustrated in (32a). These predicates are also compatible with the auxiliary $\chi^{w} O \chi^{w} / \mathrm{x}^{w} u{\underset{x}{ }}^{w}$, as shown in (32b).
(32) a. Context: I had my dinner in the oven for as long as the instructions said, but when I check it, it is only half-cooked. My oven seems to be a bit unreliable these days.

č̌ $\chi \chi$ วtč	?i	$\mathrm{x}^{\mathrm{w}} \mathrm{a}$?	č¢məs	$\stackrel{\rightharpoonup}{c}$ c χ.
č̀ $\partial \underline{\text { che }}$-at=č	Piy	$x^{w} a ?$	čam $=$ as	č̀ x ¢
get.cooked-CTR=1s.SBJ	CONJ	NEG	QUEX=3SBJV	get.cooked
*'I cooked it, but it still wasn't cooked.'				BW

b. Context: Discussing a thanksgiving turkey mishap.
hehewč $\quad \chi^{\mathrm{w}} \chi^{\mathrm{w}}$ mot č $\varepsilon \chi ə \mathrm{~s} \quad$ š č̌kn $\varepsilon \mathrm{s}$.
hihiw=č $\quad \mathrm{x}^{\mathrm{w}} \mathrm{u} \mathrm{x}^{\mathrm{w}}$-mut čax \quad cat \quad š $=$ čiknis
really $=1 \mathrm{~S}$. SBJ long.time-INT cook-CTR DET=chicken
'I really cooked the turkey for a long time.'
BW

Having established that eventive bare roots and noncontrol transitives are telic, and that derived unergatives and control transitives are atelic, we can examine whether the distribution of $\mathrm{C}_{1} \mathrm{C}_{2}$ reduplication is restricted with respect to the telicity of the predicate. We find that $\mathrm{C}_{1} \mathrm{C}_{2}$ reduplication occurs with both telic and atelic predicates. It occurs with eventive bare roots (33a) and predicates transitivized with the noncontrol transitivizer (33b-c), which are telic.

'Open all the doors.' EP
b. Context: Narrating a story based off a series of pictures showing a child running around a house and bumping into a table.

paye		Puk ${ }^{\text {w }}$	tamas
paya?		Pəwk	tam=as

c. Context: Describing child on Easter morning ...

	to $\chi^{\mathrm{w}} \mathrm{a} \chi^{\mathrm{w}} \varepsilon$ t.
	to $=\mathrm{x}^{\mathrm{w}}$ ax $\mathrm{a}^{\text {wit }}$
$\mathbf{C l}_{1} \mathbf{C}_{\mathbf{2}} \mathbf{.}$ PL \sim See-NCTR-3ERG	DET $=$ egg

'She found (chocolate) eggs all over.'
PD

It also occurs with atelic predicates, such as unergative activities (34) and with predicates transitivized with the control transitivizer (35) ((34b) is repeated from (17b) above).
a. Context: Someone is going around half dancing.
čelčitem.
čəl~čil-im
$\mathbf{C}_{\mathbf{1}} \mathbf{C}_{\mathbf{2}}$. $\mathbf{P L} \sim$ dance -MD
'He/she is dancing around.' EP
b. Context: Someone jumping from rock to rock across a river.

$\overrightarrow{\mathbf{k}}^{\mathrm{w}}<\mathbf{a}>\mathbf{t}^{\theta} \sim \hat{\mathbf{k}}^{\mathrm{w}} \mathrm{it}^{\boldsymbol{\theta}}-\mathrm{im}$
$\mathbf{C}_{1} \mathbf{C}_{\mathbf{2}}$. $\mathbf{P L}<\mathrm{ABL}>$ jump-MD
'He/she is jumping.' EP
$\begin{array}{lllll}\text { a. } \begin{array}{lll}\text { Puk } \\ \text { w }\end{array} \text { təqtəqtən, } & \text { məmkeystən } & \text { hega } & \text { Pemen. } \\ \text { Pəwk } \\ \text { w } & \text { təq~təq-t-an } & \text { məmkiyustən higa } & \text { Pimin } \\ \text { all } & \mathbf{C}_{1} \mathbf{C}_{2} . \text { PL~close-CTR-1SG.ERG } & \text { window } & \text { CONJ } & \text { door }\end{array}$
'I closed everything, the windows and the doors.' JF
b. Context: Someone went to check out a boat or car that is for sale.

$\mathrm{go}=\mathrm{RPT} \quad \mathbf{C}_{1} \mathbf{C}_{\mathbf{2}} \cdot \mathbf{P L} \sim$ see - CTR $-3 E R G-P S T$
'He went to look it over.'
EP

As can be seen from the examples above, $\mathrm{C}_{1} \mathrm{C}_{2}$ reduplication is not restricted with respect to telicity. It also occurs with a wide range of predicates, not just those which involve punctual or repeated punctual events (achievements and semelfactives). With respect to eventive stems, then, $\mathrm{C}_{1} \mathrm{C}_{2}$ reduplication behaves as an event-external pluractional and does not appear to be restricted with respect to which lexical aspectual classes it is compatible with.
$\mathrm{C}_{1} \mathrm{C}_{2}$ reduplication is infrequent with stative stems. It occurs with a few underived states, but the semantic contribution is variable, and seemingly lexicalized. In some cases, it results in a plural participant reading (36a), while in others the reduplication has a contribution which is clearly not plural, although it is difficult to characterize (36b). Derived states are pluralized by $-\mathrm{C}_{1}$ - infixation (36c) (analyzed as $\mathrm{C}_{1} \mathrm{~V}_{1}$ reduplication in Watanabe 2003:376-384; see Mellesmoen \& Huijsmans 2019a for further discussion), and do not occur with $\mathrm{C}_{1} \mathrm{C}_{2}$ reduplication.
(36) a. tihtih
tih~tih
$\mathrm{C}_{1} \mathrm{C}_{2}$. $\mathrm{PL} \sim$ big
'big things'
b. pəqpəq
$\mathbf{p ə q} \sim \mathrm{p}$ әq
$\mathbf{C}_{1} \mathbf{C}_{2} \sim$ white
'all white, very white, white-ish, white (pl.)'
WJF/MV
c. tatpét
ta< \rangle p-it
get.beached $<$ PL $>$-STAT
'multiple things beached' EP, FL

The limited occurrence of $\mathrm{C}_{1} \mathrm{C}_{2}$ reduplication with stative predicates can be understood as a restriction to pluralizing events rather than states. Overall, then, we conclude that the distribution of $\mathrm{C}_{1} \mathrm{C}_{2}$ reduplication with respect to aspectual properties of the stem is typical of an event-external pluractional marker.

Predicates like knocking, shivering, and nibbling involve multiple sub-events that are typically or inherently repeated. According to Wood's fourth diagnostic, predicates involving typical or inherent repetition are typically associated with event-internal pluractionality, while event-external pluractionality is often found with predicates that do not involve typical or inherent repetition. $\mathrm{C}_{1} \mathrm{C}_{2}$ reduplication often pluralizes events that are not typically or inherently repeated, such as closing doors or windows (e.g. 7b), bumping into things (33b), buying things (11a), or something turning on (15). According to Wood's fourth diagnostic, then, $\mathrm{C}_{1} \mathrm{C}_{2}$ reduplication behaves as a marker of eventexternal pluractionality.

According to Wood's fifth diagnostic, subevents of event-internal pluractionals are typically oriented towards a common goal, whereas the events of an event-external pluractional need not be. The plural events signaled by $\mathrm{C}_{1} \mathrm{C}_{2}$ reduplication do not have to have a common goal or completion. For instance (25a), repeated here as (37a), involves
multiple trips with different goals. Similarly, (33b), repeated here as (37b), does not involve goal-oriented behavior but rather suggests multiple bumping events that are accidental. Again, $\mathrm{C}_{1} \mathrm{C}_{2}$ reduplication behaves as expected for an event-external, but not event-internal, pluractional.
(37) a. Context: Describing someone who's always giving rides to people. payє Rot \quad ұәрәəрі Freddie.
paya? $=$?ut $\quad \mathbf{x} ә \mathbf{p} \sim$ х̣әрәу \quad Freddie always=EXCL $\quad \mathbf{C}_{1} \mathbf{C}_{\mathbf{2}}$.PL \sim return Freddie 'Freddie's always back and forth.' EP
b. Context: Narrating a story based off a series of pictures showing a child running around a house and bumping into a table. paye $\quad \mathbf{q}^{w a} \mathbf{q}^{w} q^{w} a q^{w}{ }^{w} x^{w} \partial s$

Puk ${ }^{\mathrm{w}}$ taməs.

always $\mathbf{C}_{1} \mathbf{C}_{2}$. $\mathbf{P L}<\mathbf{A B L}>\sim$ bump-NCTR-3ERG all thing $=3 \mathrm{CNJ}$ 'He's always bumping into everything.' EP, FL

Wood's sixth diagnostic is that event-internal pluractionals are typically associated with a single (or grouped) absolutive argument. We have seen, however, that the plural events signaled by a predicate with $\mathrm{C}_{1} \mathrm{C}_{2}$ reduplication do not need to involve a single or grouped absolutive argument. For instance, (37b) involves someone bumping into different, unspecified objects. Similarly, the books in (15) must be distributed across
different stores, rather than being bought as a set or group. Given the requirement that $\mathrm{C}_{1} \mathrm{C}_{2}$ reduplication involves distribution of events in time and space, it is not surprising that the absolutive argument is not typically singular or grouped, since a singular or grouped entity would typically exist in a single location and be simultaneously affected by any action. According to this final diagnostic, therefore, $\mathrm{C}_{1} \mathrm{C}_{2}$ reduplicated predicates exhibit behavior typical of event-external, rather than event-internal, pluractionality.

With respect to all the diagnostics proposed by Wood (2007), predicates with $\mathrm{C}_{1} \mathrm{C}_{2}$ reduplication exhibit behavior typical of event-external pluractionals. Elsewhere (Mellesmoen \& Huijsmans 2019b), we argue that their behavior contrasts with predicates marked by an ablaut process that contributes event-internal pluractionality. ${ }^{16}$ Given the results of these diagnostics, we analyze $\mathrm{C}_{1} \mathrm{C}_{2}$ reduplication as event-external pluractionality and propose a formal analysis in the following section.

3.5 Formal analysis of $\mathrm{C}_{1} \mathrm{C}_{2}$ reduplication

Our findings are consistent with the formal analysis proposed by Lasersohn (1995) for verbs encoding event-external pluractionality with spatio-temporal distribution of events. However, since both temporal and spatial distribution are necessary for PayPay̌u日əm verbs with $\mathrm{C}_{1} \mathrm{C}_{2}$ reduplication, we make this restriction explicit in the formalism (Lasersohn's 1995:252 denotation is intended to capture events 'distributed in time-or-space'). The formula in (38) requires that a verb with pluractional marking (PA) involves a set of
events of the type denoted by the verb V with a cardinality greater than n that overlap in neither the temporal τ or spatial σ dimension.
(38) $\quad \mathrm{V}-\mathrm{PA}(\mathrm{X}) \Leftrightarrow \forall \mathrm{e}, \mathrm{e}^{\prime} \in \mathrm{X}\left[\mathrm{V}(\mathrm{e}) \& \mathrm{~V}\left(\mathrm{e}^{\prime}\right) \& \neg\left[\sigma(\mathrm{e})^{\circ} \sigma\left(\mathrm{e}^{\prime}\right)\right] \& \neg\left[\tau(\mathrm{e})^{\circ} \tau\left(\mathrm{e}^{\prime}\right)\right]\right] \&$ $\operatorname{card}(\mathrm{X}) \geq \mathrm{n}$

As mentioned in the introduction, previous analyses of event-external pluractionality, such as Lasersohn's (1995) analysis of Klamath pluractionals and Wood's (2007) analysis of Yurok and Chechen pluractionals, allow for events to be pluralized through distribution over participants. However, we have seen that distribution over participants is neither necessary nor sufficient for use of the $\mathrm{C}_{1} \mathrm{C}_{2}$ reduplication in PayPaǰu $\theta ə m$. Rather, distribution over participants can be seen as the outcome of requiring the events to be distributed in space and time (one cannot close the same door multiple times and have the closing events distributed in space, for instance (13)). In proposing that the pluractional requires a specific spatio-temporal configuration of events, our analysis is similar to Henderson's (2012) analysis of event-external pluractionals in Kaqchikel, which involve a plurality events individuated through temporal distribution regardless of the number of participants involved.

A welcome result of adopting the denotation in (38) is that the different readings that arise with different types of predicates fall out naturally. Where the predicate does not have an endpoint, as in (39) the subevents of the pluractional can be adjacent,
interpreted as a continuous larger event made up of adjacent spatio-temporally distributed events.
a. ho θ o kwa Pəm?とmaš tawən.
hu $\sim \theta \mathrm{u}=\mathrm{k}^{\mathrm{w}} \mathrm{a} \quad$ Pəm~?imaš tawən IPFV \sim go $=$ PRT $\quad \mathbf{C}_{1} \mathbf{C}_{2}$.PL~walk town 'They're walking around town.'

FL/EP
b. papkwátolč č\&n̉o.

$$
\mathrm{pa}<\mathrm{p}>\mathrm{k}^{\mathrm{w}}-\mathrm{a} \mathrm{t}-\mathrm{ul}=\check{\mathrm{c}} \quad \stackrel{\circ}{\mathrm{c} a n ̉ u}
$$

$$
\text { observe }<\text { PL }>-\mathrm{CTR}<\text { STAT }>-\mathrm{PST}=1 \mathrm{SG} . \text { SBJ } \text { dog }
$$

$$
\text { ?aq̣?aq̉atəs məmmemaw } \quad \text { Pasq́ }
$$

$$
\mathbf{P} \boldsymbol{\imath} \mathbf{q} \sim \text { Paq́q-at-as } \quad \text { məm~mimaw } \quad \text { Pasq́ }
$$

$$
\mathbf{C}_{1} \mathbf{C}_{2} . \text { PL } \sim \text { chase-CTR-3ERG } \quad \mathrm{C}_{1} \mathrm{C}_{2} . \text { PL } \sim \text { cat } \quad \text { outside }
$$

'I was watching the dog. He chased the cats all over the yard.' JF

This is expected since (38) is agnostic with respect to temporal spacing between events. In fact, $\mathrm{C}_{1} \mathrm{C}_{2}$ plural reduplication of atelic predicates like Pimaš 'walk' is compatible with a variety of contexts, which involve adjacent or nonadjacent walking events, as in (40). ${ }^{17}$
(40) a. Context: We have a usual route for a Sunday afternoon walk. We don't stop along the way, we just walk the route. On Sunday evening, describing our activities of the day to someone, I say:
hošt \quad əəmPemašoł.
$h u=s ̌ t \quad$ Pam~ Pimaš-uł
go $=1$ PL.SBJ $\quad \mathbf{C}_{1} \mathbf{C}_{\mathbf{2}}$. PL~walk-PST
'We went walking about.' BW
b. Context: I was walking around doing errands. I walked to the grocery store, walked somewhere to get lunch, and then walked to Canadian Tire to get something else.
tihmotč \quad PomPemaš $\hat{f}^{\theta} \mathrm{ok}^{\mathrm{w}}$.
tih-mut=č \quad Pəm~ Pimaš $\quad \hat{t}^{\theta} u k^{w}$
big-INT=1sG.SBJ $\quad \mathbf{C}_{1} \mathbf{C}_{2}$.PL~walk day
'I walked a lot today.' JF

Telic predicates, such as predicates marked with the non-control transitive suffix (see section 3.4 above), are more clearly distributed, regardless of whether subevents are adjacent (41) ((41b) is repeated from (33c), above).
a. k^{w} a Puk ${ }^{\mathrm{w}}$ hoy nak $^{\mathrm{w}} \mathrm{nok}^{\mathrm{w}} \mathrm{UX}^{\mathrm{w}}$ əs.

CL.DEM $=$ all finish $\mathbf{C}_{1} \mathbf{C}_{\mathbf{2}}$.PL<ABL>~put.up-NCTR-3ERG
'He finished putting them all up (fence posts or poles).' JF
b. Context: Describing child on Easter morning ...

$\mathbf{k}^{\text {w }}$ Unk ${ }^{\text {w }}$ UnUx ${ }^{\text {w }}$ วs	to $\chi^{\mathrm{w}} \chi^{\mathrm{w}} \mathrm{E}$ t.

$\mathbf{C}_{\mathbf{1}} \mathbf{C}_{\mathbf{2}}$. PL \sim See - NCTR-3ERG \quad DET $=$ egg
'She found (chocolate) eggs all over.'
PD

Crucially, the $\mathrm{C}_{1} \mathrm{C}_{2}$ plural reduplicative process has a consistent interpretation (indicating plural events distributed in time and space) with all eventive predicates, motivating a unified analysis. Faced with a similar range of interpretations for pluractionals in Chechen, Wood (2007:246-7) argues that pluractionals with the same type of pluractional marking may express event-internal or event-external pluractionality: the events of a pluractional activity can be grouped into a single larger event forming an event-internal pluractional, while the same morphology can also express event-external pluractionality with predicates of other lexical aspectual classes, and even with activities when the events are distributed across occasions. However, we have seen that the eventexternal denotation given in (38) can capture the full range of readings that arise with $\mathrm{C}_{1} \mathrm{C}_{2}$ reduplication in PayPaju 0 əm. Given the consistent contribution of the $\mathrm{C}_{1} \mathrm{C}_{2}$ plural reduplicative process and its behavior as an event-external with respect to Wood's
diagnostics, we take it to be preferable to analyze all cases as involving the same eventexternal denotation.
4. The -Vg- affix

One of the goals of this paper was to discern whether different PayRay̆u日əm plural morphemes are better categorized as multiple allomorphs of the same plural morpheme, as Thompson (2009) argued for Upriver Halkomelem, or a collection of morphemes with distinct semantic contributions, as Kinkade (1995) described for Upper Chehalis. We return here to this issue here, comparing the function of the -Vg - affix to the description of $\mathrm{C}_{1} \mathrm{C}_{2}$ reduplication in Section 3. The forms in (42) show the difference between the - Vg - affix and $\mathrm{C}_{1} \mathrm{C}_{2}$ reduplication on the verb čitim 'dance'. The $\mathrm{C}_{1} \mathrm{C}_{2}$ reduplicated form does not require plural participants and can be used felicitously if there is spatiotemporal distribution. In contrast, the form with the affix in (42a) is only accepted with a plural argument.

(42) a. čitemew.

čil-im-iw dance-MD-PL 'They dance.'
b. č\&łčilem.
čəł~čilim
$\mathbf{C}_{1} \mathbf{C}_{\mathbf{2}}$. $\mathrm{PL} \sim$ dance-MD
'She is dancing here and there.'
EP

Similarly, the form in (43) with the -Vg-affix infixed into the root tayq- 'to move' is rejected if both the subject and the object are singular (43b), ${ }^{18}$ but acceptable with a plural object (43a). In contrast, a $\mathrm{C}_{1} \mathrm{C}_{2}$ reduplicated form is accepted in contexts where the arguments are interpreted as singular (43c), provided that the event is spatiotemporally distributed.
a.
tatayewqatas
ta \sim tay $<\mathbf{i w}>q-$ at - as
IPFV \sim move $<\mathbf{P L}>$-CTR-3ERG
'She's moving chairs.'
b. \# tatayewqates
ta \sim tay $<\mathbf{i w}>q-$ at-as to $\theta \mathrm{uk}^{\mathrm{w}}$ načtən.

IPFV \sim move $<\mathbf{P L}>-$ CTR-3ERG DET $=$ chair
'She's moving a/the chair.'
c. taytayqatas
tay~tayq-at-as
$\mathbf{C}_{1} \mathbf{C}_{2}$. PL \sim move-CTR-3ERG DET=chair
'She's moving a/the chair around.'

Moreover, forms with the -Vg- affix do not require spatial and temporal distribution of events, as shown in (44a) (repeated from (16a)), and are compatible with stative predicates, as in (44b).
(44) a. Context: A bunch of students jumping for a graduation photo. Everyone jumps at the same time, just once.

Puk ${ }^{\mathrm{w}} \quad \dot{\mathrm{k}}^{\mathrm{w}}{ }^{\hat{t}}{ }^{\theta} \varepsilon m \varepsilon w$.
Pəwk ${ }^{\mathrm{w}} \dot{\mathrm{k}}^{\mathrm{w}} \mathrm{it}^{\theta}-\mathrm{im}-\mathbf{i w}$
all jump-MD-PL
'They all jumped.'
PD

all $=$ RPT be.there $-\mathbf{P L} \quad$ DET $=$ up
'Everyone is upstairs.'
FL

As mentioned in section 2, the plural affix can mark plurality of the subject of a transitive predicate. The form with the plural suffix following the control transitive
requires a plural agent, as shown in (45). This is another point of contrast with $\mathrm{C}_{1} \mathrm{C}_{2}$ reduplication which never requires a plural agent of a transitive predicate (though distribution of events through space can necessitate a plural object in some cases).
(45) Context: Talking about our consultant's cats...
paye məmk ${ }^{w}$ tegəs ǰ $\mathrm{cn} \mathrm{x}^{\mathrm{w}}$.
paya? mə~mk ${ }^{\mathrm{w}}-\mathrm{t}-\mathrm{ig}-\mathrm{as} \quad \mathrm{j}_{\mathrm{an}} \mathrm{x}^{\mathrm{w}}$
always IPFV~eat-CTR-PL-3ERG fish
‘They're always eating fish.' JF

A final argument for the distinct functions of the plural affix and $\mathrm{C}_{1} \mathrm{C}_{2}$ reduplication comes from the data in (46), where both plural markers occur in the same word. Their ability to co-occur suggests that the two markers are different morphemes. The interpretation of (46) can be analyzed as a combination of argument plurality and spatio-temporal distribution, where the affix corresponds to the plural subjects of the intransitive verbs and the $\mathrm{C}_{1} \mathrm{C}_{2}$ reduplicant marks the event distribution.
(46) a. Context: There's a bunch of kids playing tag.

'The children are running about.'

KG, EP
b. Context: There's a family group out for a walk. PวmPعmašzw.

Pəm~?imaš-əw
$\mathrm{C}_{1} \mathrm{C}_{2}$.PL~walk-PL
'They are walking about.' BW

5. Conclusion

We conclude that $\mathrm{C}_{1} \mathrm{C}_{2}$ reduplication encodes event-external pluractionality, requiring both spatial and temporal distribution of events to be felicitously used. The -Vg-affix has a distinct contribution, marking plural arguments. Our findings contrast with Thompson's (2009) description of $\mathrm{C}_{1} \mathrm{C}_{2}$ plurals in Upriver Halkomelem, where he argues that $\mathrm{C}_{1} \mathrm{C}_{2}$ reduplication can mark plural participants, plural actions distributed in time, or plural actions distributed in time and space, but resembles Kinkade's (1995) and Bar-el's (2008) claims concerning $\mathrm{C}_{1} \mathrm{C}_{2}$ reduplication in Upper Chehalis and Skwxwú 7 mesh, respectively. Our analysis has implications for the typology of pluractionals, since we show both that distribution over participants is not sufficient for an event to count as pluractional and that non-overlap in 'time-or-space' is not restrictive enough for spatiotemporal distribution of events in PayPay̆u $\theta ə m$. Since our findings require a more restrictive denotation than that proposed in Lasersohn (1995), this investigation illustrates how semantic fieldwork complements typological work in uncovering the organization of meaning in natural language.

References

Andreotti, Bruno Luis de Oliveira. 2018. Interpreting derived stative predicates: Evidence from PayPaju日əm. Master's thesis, University of British Columbia.

Blake, SUSAN JANE. 1992. Two aspects of Sliammon (łá?amınqən) phonology:
Glide/obstruent alternation and vowel length. Master's thesis, University of British Columbia.

BLAKE, SUSAN JANE. 2000. On the distribution and representation of schwa in Sliammon (Salish): descriptive and theoretical perspectives. Doctoral dissertation, University of British Columbia.

Bar-el, Leora, Henry Davis, and Lisa Matthewson. 2005. On non-culminating accomplishments. In Proceedings of the North Eastern Linguistics Society (Vol. 35). University of Massachusetts, Amherst: GLSA Publications.

BAR-EL, LEORA. 2008. Verbal number and aspect in Skwxwwú7mesh. Recherches linguistiques de Vincennes 37, 31-54.

CUSIC, DAVID Dowell. 1981. Verbal plurality and aspect. Doctoral dissertation, Stanford University.

Davis, John H. 1978. 'Pronominal Paradigms in Sliammon. In Papers for the 13th International Conference on Salish Languages.

Davis, Henry, and Marianne Huijsmans. 2017. Changes in the alignment of arguments in transitive clauses in PayPay̌uəəm (Comox-Sliammon). In Papers for the International Conference on Salish and Neighbouring Languages 52: 13-46.

First Peoples' Cultural Council (FPCC). 2018. Report on the status of B.C. First Nations languages. Retrieved from http://www.fpcc.ca/les/PDF/FPCC-LanguageReport-180716-WEB.pdf.

HENDERSON, ROBERT. 2012. Ways of pluralizing events. Doctoral dissertation, UC Santa Cruz.

Henderson, Robert. 2017. Pluractionality in Mayan. In The Mayan languages, ed. Judith Aissen, Nora England, \& Roberto Zavala Maldonado. London: Routledge.

Huijsmans, Marianne, Daniel K. E. Reisinger, Roger Yu-Hsiang Lo, and Kaining Xu. 2018. A preliminary sketch of determiners in PayPaju日əm. In Wa7 Xweysas i Nqwal'usattensa i Ucwalmicwa (He Loves the People's Languages): Essays in Honour of Henry Davis, ed. Matthewson, L., Huijsmans, M., and Rochemont, M. 329-341. Vancouver: University of British Columbia Occasional Papers in Linguistics.

Kinkade, M. Dale. 1995. A plethora of plurals: Inflection for number in Upper Chehalis. Anthropological linguistics 347-365.

Kiyota, Masaru. 2008. Situation aspect and viewpoint aspect: From Salish to Japanese. Doctoral dissertation, University of British Columbia.

Krifka, Manfred. 1998. The origins of telicity. In Events and grammar, ed. Susan Rothstein, 197-235. Dordrecht: Kluwer.

Kroeber, Paul. Demarest. 1991. Comparative syntax of subordination in Salish. PhD disseration, University of Chicago.

Lasersohn, Peter. 1995. Plurality, conjunction and events. Dordrecht: Springer.

Matthewson, Lisa. 2000. On distributivity and pluractionality. Semantics and Linguistic Theory 10:98-114.

MATtHEWSON, LISA. 2004. On the methodology of semantic fieldwork. International Journal of American Linguistics 70:369-415.

Mellesmoen, Gloria. 2018. A one (morpheme) by one (morpheme) approach to paPapyaP: -VP- as a temporal pluractional infix in Comox-Sliammon. In Proceedings of the 53rd International Conference on Salish and Neighbouring Languages, ed. Marianne Huijsmans, Roger Lo, Oksana Tkachman, \& Daniel Reisinger, Vancouver, UBCWPL:143-160.

Mellesmoen, Gloria. 2018. Sonorant voicing ([SV]) in Comox-Sliammon. In Papers for the 53rd International Conference on Salish and Neighbouring Languages, ed. Marianne Huijsmans, Roger Lo, Oksana Tkachman, \& Daniel Reisinger, Vancouver, UBCWPL:125-141.

Mellesmoen, Gloria. 2020. A reanalysis of CV- reduplication in Comox-Sliammon. In Working Papers of the Linguistics Circle of the University of Victoria 30(1): 1-10.

Mellesmoen, Gloria, Henry Davis, and Lisa Matthewson. 2020. Decomposing distributive numerals in PayPay̌uӨəm (Comox-Sliammon Salish). In M. Franke et al. (eds.), Proceedings of Sinn und Bedeutung 24 (pp. 72-89). Osnabrück/Berlin: Osnabrück University and Humboldt University of Berlin.

Mellesmoen, Gloria, and Marianne Huissmans. 2019a. Stative allomorph selection and raised pitch in PayRay̆uもəm, In Papers for the Fifty-Fourth International Conference
on Salish and Neighbouring Languages, eds. D. Reisinger \& G. Mellesmoen, Vancouver, UBCWPL:139-162.

Mellesmoen, Gloria, \& Marianne Huijsmans. 2019b. Types of pluractionalty and plurality across domains in PayPay̆u $\theta ə m$. In Proceedings of the 29th Semantics and Linguistic Theory Conference (pp. 103-116), eds. K. Blake, F. Davis, K. Lamp, \& J. Rhyne.

SoUčKOVÁ, KATERǏNA. 2011. Pluractionality in Hausa. Doctoral dissertation, University of Leiden.

Thompson, James J. 2009. On verbal number in Upriver Halkomelem. Ms., University of British Columbia.

WATANABE, Honoré. 2003. A morphological description of Sliammon, Mainland Comox Salish: With a sketch of syntax. Endangered Languages of the Pacific Rim, Faculty of Informatics, Osaka Gakuin University.

WOOD, ESTHER. 2007. The semantic typology of pluractionals. Doctoral dissertation, UC Berkeley.

Footnotes

${ }^{1}$ We are deeply grateful to all of our consultants, without whose courageous determination to keep their language alive, this work would not be possible. We are grateful too for their patient and good-humoured approach to our work together that makes our time so enjoyable. We thank especially those who contributed directly to this paper: Elsie Paul, Freddie Louie, Phyllis Dominic, Joanne Francis, the late Karen Galligos, Betty Wilson, and Margaret Vivier. We are also grateful to all the other speakers who have so diligently informed our understanding of the language, in particular the late Marion Harry, the late Maggie Wilson, and the late Karen Galligos who are much missed. This paper is dedicated to them. In addition to our consultants, we would like to thank Henry Davis, Lisa Matthewson, Hotze Rullmann, members of the TAP lab at UBC, members of the PayPaǰuəm lab at UBC, and two anonymous reviewers for much helpful feedback. Finally, we are thankful for the Jacobs Funds group grant to members of the PayRay̆uもəm lab, the Jacobs Funds individual grant held by Marianne Huijsmans, and the SSHRC Insight grant \#435-2015-1694 awarded to Henry Davis which supported the research for this project.
${ }^{2}$ For more on this type of semantic fieldwork methodology, see Matthewson (2004).
${ }^{3}$ We use the label $\mathrm{C}_{1} \mathrm{C}_{2}$ to refer to what has been described as "total", C ○ C , or CVC reduplication in the literature. The purpose of this is to abstract over morphophonological processes related to vowel quality. This type of reduplication will most often surface as a $\mathrm{C}_{1} \mathrm{C}_{2}$ copy, where a schwa occurs between copied consonants, but in some cases the vowel may be /a/. See Section 3.3 for our arguments that $\mathrm{C}_{1} \mathrm{C}_{2}$ and $\mathrm{C}_{1} \mathrm{aC}_{2}$ forms involve
the same reduplicative morpheme and thus should receive the same semantic analysis. For this reason, we do not propose separate underlying forms or reduplicative processes (cf. Watanabe 2003). We also use the label -Vg- for the plural affix, which is a departure from Watanabe's (2003:471) -?Vg-. The glottal stop is never realized as [?] in the surface form; it is instead associated with a variable glottalization process (cf. Watanabe 2003: 471).
${ }^{4}$ The -Vg- affix is not productive with nouns. Watanabe $(2003: 471,484)$ reports only two examples: qayعwmix ${ }^{w} / q a y$ y $<a w>\mathrm{mix}^{\mathrm{w}} /$ 'First Nations people' from qaymıx ${ }^{\mathrm{w}} /$ qaymix $^{\mathrm{w}}$ / 'First Nations person' and $\chi \varepsilon \chi \varepsilon w n \varepsilon q ं ə m / x ̣ i x ̣<i w>n i q ̉ ə m / ~ ' o w l s ' ~ f r o m ~ \chi \varepsilon \chi n \varepsilon q ं / x ̣ i x ̣ n i q ̆ / ~$ 'owl'. Note that/g/ in this affix alternates with [w], as discussed below (3) in the main text.
${ }^{5}$ The abbreviations used in this paper are: 1 'first person', 3 'third person', ACT.INTR 'active intransitive', C 'consonant', CONJ 'conjunction', SUBJ ‘subjunctive', CTR 'control transitive', DEM ‘demonstrative', DET 'determiner', DPRT 'discourse particle', ERG 'ergative', EXCLAM 'exclamation operator', FUT 'future', INT 'intensifier', INTR 'intransitive', IPFV ‘imperfective', MD ‘middle', MOD 'modal', NMLZ 'nominalizer', NCTR 'non-control transitive', OBL 'oblique', PASS 'passive', PL 'plural', POSS 'possessive', PRT 'particle', PST 'past', SG ‘singular', SBJ ‘subject', STAT 'stative', and V 'vowel'. We use to indicate morphological boundaries between concatenative morphology, \sim to indicate a reduplication boundary, \gg for infixation, and + between two morphemes that contract in a way that is not consistent with regular phonological rules in the language. Speaker initials are provided beside the examples. The top line of each example is an orthographic
representation, the second line is a transcription using NAPA, the third line provides a gloss, and the fourth line a translation.
${ }^{6}$ For linguists familiar with Salish languages, the lack of determiners preceding arguments in examples such as (3a) may seem odd. In PayPay̌uӨəm, however, determiners are often elided in connected speech (noted previously by Kroeber 1991:91-92,171-2, Watanabe 2003:379, Huijsmans et al. 2018).
${ }^{7}$ Matthewson (2000) also states a requirement for a temporal distribution of events in her analysis of the distributive numeral pelpála7 in St'át'imcets (a Northern Interior Salish language). However, this marker also requires distribution over atomic parts of a plural participant, giving 'one-at-a-time' readings (Matthewson 2000, see also Mellesmoen 2018 for an analysis of the cognate paPapya? in PayPaju日əm).
${ }^{8}$ An observant reader may have noticed that that the control transitivizer has a different form in (7a-b) than in (3a) above. With weak roots (roots with a schwa), the control transitivizer has the form $-t$, as in (7a-b), while with strong roots (roots with /i/, $/ \mathrm{a} /$, or $/ \mathrm{u} /$) the same transitivizer has a link vowel $\mathrm{V}(-V t)$ which is usually a copy of the root vowel, as in (3a-b). See Watanabe (2003:214-16) for a more thorough discussion of the different forms of the control transitivizer. While Watanabe (2003) glosses the link vowel as separate, we treat the link vowel as a part of the transitivizer suffix and do not place a morpheme break between them.
${ }^{9}$ A similar restriction may also be found in Hausa, where pluractionals cannot be interpreted as simple iteratives (Součková 2011).
${ }^{10} \mathrm{We}$ also tested $\chi^{w} O{ }^{2} \chi^{w} O P / \underline{x}^{w} \partial{ }^{\mathrm{W}} \mathrm{x}^{\mathrm{w}} \partial \mathrm{W} /$ 'coming on here and there' in a case where you see multiple streetlights coming on at once. In this scenario, $\chi^{w} O{ }^{2} \chi^{w} O P / x^{w} \partial w x^{w} \partial{ }^{w} \partial /$ was originally rejected, as shown in (ia), and the form in (ib) was offered instead. However, in a later session, (ic) was accepted to describe this scenario. We think ti $q^{w} o l$ /ti $q^{w} \partial{ }^{\prime} /$ is probably contributing a 'starting to' reading here, as in (15a), rescuing the utterance since while the streetlights on this block may be synchronized, all the streetlights throughout the city or town are unlikely to come on at exactly the same moment in time. This leaves room for temporal distribution of the events and allows the example to be interpreted as felicitous.
(i) Context: You're on the street and all the streetlights come on at the same time.

$$
\begin{aligned}
& \text { a. \# } \mathrm{k}^{\mathrm{w} i} \text { Puk }^{\mathrm{w}} \quad \boldsymbol{\chi}^{\mathrm{w}} \boldsymbol{0} \boldsymbol{P} \chi^{\mathrm{w}} \text { O?. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { CL.DEM }=\text { all } \quad \mathbf{C}_{1} \mathbf{C}_{\mathbf{2}} \text {. PL } \sim \text { turn.on }
\end{aligned}
$$

'They all came on.' EP
b. $\quad \mathrm{k}^{\mathrm{w}}$ Puk $^{\mathrm{w}} \quad \chi^{\mathrm{w}}$ o?

CL.DEM=all turn.on
'They all came on.'
EP
c. ti $\mathrm{q}^{\mathrm{w} o l} \chi^{\mathrm{w} \mathbf{O} \mathbf{P} \chi^{\mathrm{w}} \mathrm{O} \text { ? to streetlights. }}$

CLDEM come $\quad \mathbf{C}_{\mathbf{1}} \mathbf{C}_{\mathbf{2}}$. PL~turn.on DET=streetlights
'The streetlights are coming on.' EP
${ }^{11}$ An anonymous reviewer asks how the examples in (20)-(21) involve spatiotemporal distribution. We interpret the 'looking over' event as temporally and spatially distributed because 'looking over' involves investigating something from multiple angles, either by moving around the object (if it is large), or turning the object over (if it is small). This also takes time. Since the 'looking' is from multiple angles over time, it is temporally and spatially distributed.
${ }^{12}$ For example, the verbs in $(14 \mathrm{a}-\mathrm{b})$ have $/ \mathrm{a} /$ in reduplicated form which does not alternate with a $/ \partial /$.
${ }^{13}$ Of course, we have also seen examples with $\mathrm{C}_{1} \mathrm{C}_{2}$ reduplication where the plural events are not separated by a temporal gap, as in (i). These examples still involve events that are distributed in space and time (see e.g. (6a) vs (9)), but the events happen to be temporally and spatially adjacent. We discuss these further in section 3.5 and show that they are compatible with an analysis of $\mathrm{C}_{1} \mathrm{C}_{2}$ reduplication as encoding event-external pluractionality.
(i) Context: I walked around campus and back to my residence without stopping.

PəmPemašolč	2i	X^{w} ač	qək ${ }^{\text {w}} \mathrm{U}$ mən.
?əm ${ }_{\text {Pim }}$-aš-ul=č	Piy	$\mathrm{x}^{\mathrm{w}} \mathrm{a}$? $=$ č	$\mathrm{q} \mathrm{k}^{\mathrm{w}}-ə \mathrm{~m}=\mathrm{an}$
$\mathbf{C l}_{1} \mathbf{C}_{2}$. PL \sim walk - PST $=1 \mathrm{SG} . \mathrm{SBJ}$	CONJ	$\mathrm{NEG}=1 \mathrm{SB} . \mathrm{SBJ}$	stop-MD $=1$ SB. CNJ
'I went for a walk and I didn	't stop.		BW

${ }^{14}$ There is another construction involving $\chi^{w} O \chi^{w} / \underline{x}^{w} u x^{w} /$ 'long time' that is compatible with telic predicates. In this structure, $\chi^{w} \sigma \chi^{w} / \underline{x}^{w} u x^{w} /$ is conjoined with the predicate using the $P i /$ Piy/ 'and' and often the auxiliary $\check{c ̌}$ 民et /čaPat/ 'then'. It is interpreted as 'it took a long time to X^{\prime}, where X stands for the contribution of the telic predicate. This is illustrated for č̉ $\varepsilon \chi /$ č̉ $\partial \mathrm{x}$ / in (i).
(i) Context: Telling you about a Thanksgiving turkey mishap.

$$
\chi^{\mathrm{w}} \chi^{\mathrm{w}} \mathrm{mot} \quad \text { Pi } \quad(\check{c} \varepsilon \text { çt) } \mathrm{c} \varepsilon \chi \chi \text {. }
$$

long.time-INT CONJ then get.cooked
'It took a long time to cook.' EP
${ }^{15}$ There does not seem to be a separate PayPaǰuəmm word for 'turkey', so the speaker uses člknes /čiknis/ which is a borrowing of English 'chicken'.
${ }^{16}$ It is not clear at this point whether the ablaut process that marks event-internal pluractionality is related to the ablaut process (described in this paper) that occurs within $\mathrm{C}_{1} \mathrm{C}_{2}$ reduplication.
${ }^{17}$ The difference between (34a) and (12a) is subtle but seems to have to do with the fact that the Sunday walk is not goal oriented and still involves walking 'here and there', even if there is a usual route, while walking to the gym is clearly an action that takes place directly between point A and point B .
${ }^{18}$ Note that it is presumably the singular interpretation of the object in (37b) that leads to infelicity of the form with the -Vg- affix, rather than the bare form of the object noun (without plural reduplication), since the bare form of the noun could be interpreted as plural, as discussed in section 2.

[^0]: 3.4 External vs. internal pluractionality

